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Abstract

The emergence of complexity in many-body systems is illustrated by the
progression of equilibrium states of N charges confined to the surface of a
sphere. This is an electrostatic problem with spherically symmetric inter-
actions and boundary conditions. For increasing values of N, the equilib-
rium solutions break this symmetry and differentiate into sets of complex
figures. For instance, states with non-vanishing dipole moments appear when
N = 11,13,19, etc.; the first enantiomeric or chiral state appears at N = 15;
and robust metastable states are encountered with increasing freqency for
N =16,22,32,35,37.... Computer searches show that when N ~ 100, sets
of 50-90 metastable states—separated by energy differences of about 0.001%—
are the norm. The capture basins, or statistical weights, of some metastable
states are larger than those of the ground state. For N > 80, the energy
variations of individual charges within configurations exceed the energy dif-
ferences between configurations by factors of 10-50. Angular comparisons show
that energetically similar states generally have completely different configu-
rations. Moreover, the geometrical patterns of the charge distributions tend
to become increasingly irregular for larger values of N. Nevertheless, there is
statistical order in the overall angular distributions, and isolated regular con-
figurations appear at a series of N values extending up to N = 112. Since the
dipole moments of all known equilibrium states (for N < 112) are bounded
by 1072, whereas the average dipole moments of spherical random N-point
distributions grow as 0.92 N 3 , it is clear that the geometric irregularity of the
Coulomb states coexists with complex order. Common features of the spher-
ical Coulomb and Tammes problems, as well as other cooperative models
such as Ewing arrays and vortex lattices, suggest several general conjectures
concerning the behavior of complex systems.
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1. Introduction

Symmetry and stability criteria are useful for describing charge configurations in a great
variety of situations ranging from J.J. Thomson’s original plum pudding model of the atom to
current investigations of carbon and indium fullerene cages [1-5]. In particular, the O(4)
symmetry associated with the Coulomb interaction underlies both the standard Bohr-Pauli level
structure of the elements as well the nested charge rings of the old plum pudding model [6-8].
This robust symmetry constraint enabled Thomson to establish the first quantitative connections
between recurrences in the patterns of charge distributions and the periodicities ;)f Mendeleyev’s
chemical table. The most striking recent success of symmetries in charge configurations is the
discovery that Cg, can exist in a stable form resembling a truncated icosahedron [9]. However,
since this is the last but one of the 13 Archimedean polyhedra, there are no further regular
structures of this kind that can serve as templates for more complex chemical cages. One method
of extending the inventory of geometric figures is to use computers to search for the static
equilibrium states of N equal point charges on the surface of a sphere. In contrast to the plum
pudding or ‘jellium’ model, where Thomson and Foppl [10] started with the presumption that
the equilibrium states would be a series of symmetric nested rings, locally stable solutions of the
surface Coulomb problem can be obtained without imposing any a priori constraints of symmetry
or other types of structural regularities. For small values of N, the results confirm the intuitive
expectation that the charge configurations are symmetric and unique. They are also extremely
robust because for the special values N, = 2 - 6, 12, the equilibrium configurations remain
invariant if the Coulomb law r* is replaced by the limiting form r*, n ~ = [11]. This ‘ultra-

repulsive’ interaction is the basis of the biological Tammes problem of finding arrangements of




N points on the surface of a sphere with the largest possible minimum distance between any pair

(12 - 15]. Since exact solutions of the Tammes problem are known for the set

Nf° = 2 - 12, 24; this invariance also yields optimum configurations for the surface Coulomb

problem for the particular values Ng' = 2 - 6, 12. Of course, these geometric solutions coincide

with the computer generated patterns. If the mutual charge repuisions are described by

logarithmic interactions rather than a power law, the corresponding equilibrium solutions for

N = 2 - 6, 12, are again given by the Coulomb set Ng [16]. Similar configurations - except

for a few changes in length scales --- appear in the jellium model {10]. All of these equivalences
suggest that in cooperative systems with few degrees of freedom symmetry principles alone may
be sufficient to determine the character of the equilibrium states. However, when N > 6, the
sets of equilibrium configurations for these four different force laws lose their resemblance.
These divergences illustrate the symmetry breaking effects associated with the emergence of new
levels of complexity in larger systems.

In the range 50 < N< 112, the surface Coulomb problem has at least 1945 locally stable

solutions. These configurations may be classified with the help of several measures based on

geometric and energy criteria. Specifically, for any particular value of N, there are a total of

N(N-1)/2 angles between the F; vectors that specify the locations of the charges on the surface

of the sphere. A simple measure of the geometric regularity of a charge distribution is then

given by the angular diversity ratio (%)




D (N) = 100 number of distinct angles . (1.1
N NN -1)2

Clearly, large values of D, (percentages exceeding 96% occur frequently when N > 50) indicate

irregular configurations that cannot be identified with any of the 123 standard types of convex
polyhedra [17, 18]. This irregularity also implies that the vertices, or charge positions, of these
Coulomb states cannot be interchanged by means of any of the usual rotational symmetry
operations. Nevertheless, lack of congruence in vertex separations or edge lengths doesn’t
exclude the persistence of other kinds of order. A quantitative measure of the difference between
random and geometrically irregular distributions of N points on the surface of a sphere is given

by the dipole moment or center of charge {19, 20]; i.e.,

N 1.2
PV (1.22)
i=1]

In particular, for a unit sphere, where |F,| = 1, the average value of the dipole moment of a

random configuration of N unit charges increases with N,

. |
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On the other hand, the dipole moments of all the equilibrium Coulomb states, for N < 112, are
bounded by 102, and typically fall in the range 1073 < |dV) | < 10°%. Obviously, this is an

orders-of-magnitude reduction from the random values. The regularities of the Coulomb states

are even more apparent in cases where the angular diversity ratios are small, say D, < 10%.

The computer searches show that there are at least 23 geometrically or.dered configurations of
this kind for a series of N values between 24 < N < 112. None of these patterns match the
Archimedean polyhedra. For instance, there are four semi-regular Archimedean polyhedra with
24 vertices; and in fact one of them, the snub cube, resembles the ordered Coulomb state with
24 charges because both configurations have 38 faces, 60 edges, and occur in enantiomeric
forms. However, all edges of the snub cube have equal length and subtend an angle of 43.68°
at the center of the sphere, whereas the 60 edges of the Coulomb configuration are split into
three sets with approximately equal lengths: 24 subtending an angle of 42.07°, 24 with an angle
of 45.04°, and 12 with an angle of 45.71°. Additional comparisons for other sets of states show
that this symmetry breaking is pervasive: there is a general trend away from strict geometric
regularity in larger systems.

The emergence of complexity is also reflected in sevel_'al physical effects. For example,

the electrostatic interaction energy of N unit charges, E(N), can be represented as the sum of the

partial energies associated with the individual charges, E, (NV); i.e.,

N

N
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This energy sharing is completely symmetric for the equilibrium states of the surface Coulomb
problem in small systems; that is, E(N) = EQN)/N for N < 5. However, when N = 5, the

equilibrium arrangement is a triangular bipyramid with three charges positioned at the vertices
of an equilateral triangle around a great circle, e.g. the equator, and the other two charges at
the north and south poles. Since the distances between pairs of equatorial charges exceed the
distance from the equator to either pole, Eq. (1.3) implies that each of the two polar charges has
a slightly greater partial.energy than the equatorial charges. This energy splitting tends to
increase for larger values of N; until at N = 59 the state with the greatest capture basin, or
statistical weight, is so asymmetric that all of the charges have different partial energies. Beyond

this point irregular states with angular diversities at the maximum value D, =100%, cf.(1.1), and

-a complete splitting of all partial energies occur with increasing frequency.

The transition from symmetry to asymmetry also appears in a shift of the center of
charge, Eq. (1.2a). For all N < 11, the equilibrium configurations of the surface Coulomb
problem are sufficiently regular so that the center of charge coincides with the center of the
sphere. This situation is analogous to the absence of permanent electric dipole moments in
symmetric atomic and molecular charge distributions [21]. But parity arguments alone cannot
exclude the existence of dipole moments in static situations. In the surface Coulomb problem
this symmetry is broken at N = 11, where the equilibrium pattern consists of an irregular

~ equatorial pentagon and two tilted isosceles triangles in the northern and southern hemispheres
[22]. This state has a moment given by |d(11)| = 0.0132; which implies the existence of an

intrinsic pattern ‘direction’, as well as a non-vanishing electric field at the center of the sphere.




Another kind of dipole symmetry breaking appears when the charge interactions are varied. For
instance, if the Coulomb law is replaced by an |F, - F}I“‘ force, the dipole moments of all of

the corresponding equilibrium configurations vanish identically [16].

A common feature of all three spherical surface problems --- associated with the
|F, - Fjl”‘, n =1, 2, and oo (Tammes) interactions -— is the occurrence of enantiomeric states

beginning at N = 15. This division marks another threshold of structural complexity. For
example, if computer searches for the equilibrium states of the surface Coulomb problem are

started at 10* random initial positions of 15 points, the trials will lead with about 50% - 50%

probability to two geometrically distinct terminal configurations, Cé (15) and Cg (15), having

precisely the same energy. These pairs of states are labeled ‘left’ (L) and ‘right’ (R) because
they can be transformed into each other by an improper isometry consisting of a rotation
combined with a reflection in a plane perpendicular to the axis of rotation [13]. It is intuitively
plausible that there should not be any statistical bias favoring either the ‘L’ or ‘R’ states if they
are derived from a random mix of initial states by a symmetric process. But in computer
simulations the ‘L’ and ‘R’ labels may be regarded as a deterministic binary code that can be

incorporated into the pseudo-random number algorithms that specify the initial states; and this

information can create a preference. Specifically, if C,,, (15) denotes a computer generated
initial state of 15 charges, and M is an energy minimizing algorithm, then it can be shown that

the mappings M [Cgx (15)] ~ C2* (15) induce a correspondence between the ‘L’ and ‘R’

enantiomers of the equilibrium configuration and two disjoint sets of initial states,




{Cra (15)} and {Cxy, (15)). These sets of initial states are also enantiomeric because they occur

in ‘L’ and ‘R’ variants -— each pair related by an improper isometry, and degenerate in energy.
In general, the points that make up the initial states are distributed uniformly over the surface
of the sphere by sets of pseudo-random number generators. The chirality of the N = 15 states
then implies that the initial angular coordinates of the charges -— and the corresponding sets of
pseudo-random numbers --- can be labeled by a binary ‘L’ and ‘R’ alphabet. By choosing
appropriate sequences of states it is therefore possible to construct any desired string or ‘message’
composed of L’s and R’s. This information, in turn, may be encoded in the pseudo-random

number generators by algorithms that retrodict any given sequence [23]. The net effect is that

either ground state, Cé (15) or Cg (15), can be generated by deterministic means although the

-

initial charge configurations are a racemic mix of L and R enantiomers. This method of choice
by-passes some of the controversial issues of biological stereochemistry [24, 25].

The equilibrium states of the surface Coulomb problem exhibit many other types of
structural transitions. It almost seems as if the addition of every new charge leads to another
level of complexity. Basically, this diversity is due to the long range of the Coulomb force: the
stable N- body conﬁgurations are the result of all N(N-1)/2 charge interactions and not just
nearest neighbor forces. Similarly, the domain structures and hysteresis of magnetic Ewing
arrays arise from the long reach of multipole forces [26]. Finding the stationary states of these
cooperative systems by analytical means is generally very difficult. ‘Greedy’ algorithms that
search for global extremals by piecing together a series of lécal ‘best’ choices can go astray even

in simpler packing and covering problems [27]. For instance, the arrangement of N congruent




spheres whose convex hull has the smallest volume is a straight line or sausage for all N < 56;

but for larger aggregates of spheres the optimum packings have entirely different shapes [28].
In a similar vein, the Tammes problem is equivalent to finding the maximum density — or
fraction of covered area --- when N congruent spherical caps are packed on the surface of a
sphere. Since any cap can touch at most five other caps, this appears to be a nearest neighbor
problem with simple contact forces {29]. But the global constraint that all the caps must fit
together on the surface of the sphere, in a not necessarily rigid packing, makes this a hard

problem.  The geometric methods used to construct exact solutions for the set

Nf* =2 - 12, 24, cannot be extrapolated to algorithms valid for arbitrary N. The best results

available for N < 90 have been obtained by computer searches that simulate the non-
oi}erlapping caps with an ultra-repulsive |F; - 7;|™, n = 1, 310, 720 potential [30].  The

surface Coulomb problem is still more complicated because both self-consistent boundary
conditions and long range forces determine the extremals. Exact results for this situation are
sparse: Topological lower bounds for the number of equilibrium states are known only for

N < 4 [31]; and local stability has been verified for only a few symmetric ring patterns [32].
Computer studies of this problem are complicated by the existence of many metastable states
separated by very small energy differences. Inthe range N < 112, this requires double precision
- computations, high statistics searches starting from many random initial configurations, and
numerical stability checks. But even with these precautions some states may be missed; and for
large N, roundoff errors affect the correspondence between analytical and numerical stability

criteria. These ambiguities are also implicit in computer simulations of the formation of ionic
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‘crystals’ in electromagnetic traps [33, 34], and the relation of protein structures to amino acid
sequences [35-37].

Prior work on the surface Coulomb problem, and computer resuits extending to N = 65,
are discussed in references [38] and [39]. The values of the ground state energies have
meanwhile been confirmed by several independent calculations [40-42, 16]. The Coulomb
| configurations have a number of practical applications: these include problems in structural
chemistry [43, 44], the design of multi-beam laser implosion drives, and the optimum placement
of communication satellites. Comprehensive summaries of related packing and covering
problems — with applications to error-free data transmission --- are given in [45]. Some
quantum mechanical extensions are discussed in [46-48].

A. Contents

In Section 2A we set up the surface Coulomb problem for N equal point charges, and
derive a simple relation between the partial energies associated with the individual charges and
the dipole moments of the equilibrium states. The computer algorithms and conventions for
orienting the charge configurations are described in Section 2B. Tabulations of the results for
therange 2 < N < 112 are given in Appendix B. Trends in the number of locally stable states
M, found by the computer searches, are summarized in Section 3A. The results indicate an
exponential increase in the number of states, i.e., M ~ exp {0.05 N}, for N > 50. Energy
;‘elatjons for the random initial states, ground states, metastable states, and the partial energy

distributions within states are discussed in Section 3B. The ground state energies can be
represented by a semi-empirical expression of the form E (N) = 0.5 N2 - 0.55 N*? over the
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entire range 6 < N < 112, Geometric properties of the equilibrium configurations are
considered in Section 4: These include the distributions of dipole moments and chiral states in
Sections 4A and 4D. Measures of order, such as the angular diversity ratios, and comparisons
with Tammes configurations and regular polyhedra are summarized in Section 4B, 4C, and 4E-1.
Some general conjectures concerning locally stable states of complex systems are discussed in
Section 5. The corresponding analytical and numerical stability criteria are reviewed in
Appendix A.
2. The Surface Coulomb Problem

A.  Analytic Formulation

The set of N unit vectors {7;, 1 <i < N} describes the position of N point charges
constrained to lie on the surface of a unit sphere. If all charges are equal the corresponding

dimensionless Coulomb energy is

N N
E E [ARS Al 2.1

The static equilibrium configurations of this system are specified by the requirement that the total

force F, acting on the i* charge is parallel to 7,. This condition implies

. & F-F
F, =y —L =EW7F, 2.2)
7 - B




where E;(N) is the partial energy associated with the i* charge, cf. (1.3). The equilibrium states
of the surface Coulomb problem are special cases of the central configurations of the (non-

relativistic) gravitational N-body problem [49-51]. Clearly, the total force on the sphere vanishes

-

r i"

wl
I
<

i=1 =1 j=
i

2.3)
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j

because the double sum is odd under an interchange of indices. If all the partial energies are
equal, i.e., E(N) = E(N)/N, Eq. (2.3) implies that the corresponding dipole moments also

vanish, cf. (1.2a):

dmw) = Z = (2.43)

But this is only a sufficient condition. There are many equilibrium configurations for which

N
Y E Z - (2.4b)

even though E, (N) = E; (N) for at least one pair of indices. If the interaction energies of the

charges are logarithmic, Eq. (2.2) is replaced by
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This expression shows that all the equilibrium forces have the same magnitude and -— in analogy
with (2.4b) — the corresponding dipole moments vanish identically {16]. These constraints
indicate that the equilibrium configurations of the surface logarithm problem generaily tend to
be more regular than the equilibrium states of the surface Coulomb problem. In both cases the
equilibrium coordinates 7; satisfy sets of linear relations, such as (2.3) and (2.4b), which are
vectorial generalizations of cryptogﬁphic knapsack problems: these are knmown to be

computationally difficult, or NP - hard [52].

-

The locally stable equilibrium configurations of the surface Coulomb problem satisfy the
additional constraint that the associated energies are local minima. Specifically, if the charge
positions are described by spherical coordinates — the co-latitudes 0 < ¢, < =, and longitudes
-x < 6, < 1 — then the Coulomb energy (2.1) is E(¢,, 8,), 1 < i < N; and the equilibrium

condition (2.2) is equivalent to

0E _ OE

— = — =0,1< i< N. 2.6a
%, szs' ( )

i

IfQ,1<x s2N - ¢,...0y, 6,..0,,, then a sufficient condition for @e local stability of

the solutions of (2.6) is that the associated Hessian matrix

14



FE

H@e Q)= ea
X B

,1s x, p < 2N (2.6b)

is positive definite. See Appendix A. Physically, this simply means that tangential restoring

forces, i.e. F,.'” * F; = 0, counter small displacements from equilibrium. In potential theory

these locally stable configurations are known as Fekete points, and some asymptotic estimates
of the rate of approach to the limit of continuous charge distributions are available 55, 56]. In
Section 3B these methods are used to construct an expression for the ground state energy E(N).

Both in the Coulomb and dipble problems analytic solutions of the equilibrium equations
(2.6a) and evaluation of the associated Hessians (2.6b) becomes tedious for as few as four
interacting objects [32, 57]. At present, the only practical way of surveying the locally stable
states of the Coulomb systems for larger values of N is to use computers to find energy minima.

However, since the number of minima appears to grow exponentially with N, the energy surface
E(d,, 6,; ....; &y, 6,) becomes progressively more convoluted, and for N > O(10%) has many |

small hills and valleys. This leads to fundamental difficulties in mapping out the topography of
the energy surfaces: It is necessary to distinguish genuine physical features such as minute ridges
or clefts arising from the competition among the N(N-1)/2 charge interactions from numerical
artifacts such as corrugations due to roundoff or truncation errors. Furthermore, even high
statistics computer searches can miss some minima thh small capture basins or special
symmetries. The net result is that computer trials can both over - and underestimate the actual

number of locally stable states. Analytic and numerical stability criteria for multidimensional
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energy surfaces are discussed in more detail in Appendix A.

B. Computer Algorithms

) V P
FAJAVA ]

,.
Q

Fermilab. This is a parallel processing machine utilizing 600 double precision nodes. The
computer searches for the locally stable states of the surface Coulomb problem were started from

sets of points randomly distributed over the surface of the sphere --- specifically, 10* random

starts for every value of N in the range 2 < N < 64; 2000 starts for each successive N in the
interval 65 < N < 108, 111; and 1000 starts for N = 109, 110, and 112. The initial charge
configurations were described by sets of spherical coordinates F; (¢;, 0,), where each angle is

tepresented by a 24-bit, or 7 decimal, pseudo-random number normalized to yield a uniform
spherical distribution [19, 20]. The equilibrium states were found by allowing the points to
move in the direction of the forces acting on them subject to the constraint of remaining on the

surface of the sphere. The steepest descent method of iterating the map
F, -~ 7 = , + v F)I|F, +vy F,|, with y chosen to maximize convergence, was used for this
problem by Claxton and Benson [43]. In the limit y — «, the update formula reduces to

F - 7 = F, ||F,|, which is an over-relaxed update step with good convergence. If this step

is so large that the {F,} configuration has a higher energy than the {F,} state, y is automatically

adjusted downward for that step until the energy does decrease. The iterations are terminated

when the energies stabilize within the machine precision of one part in 2** (~14.4 decimals).
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Since these computations involve the cancellation of large forces it is essential to use at least 48-

bit precision. Conjugate-gradient methods do not improve this technique because of the highly

convoluted structure of the energy surface.

In order to compare the geometric properties of the equilibrium states it is useful to rotate
the configurations into a standard set of orientations. According to (1.3) the N charges of a

locally stable state may be labeled by their partial energies. Suppose that these are ordered in

' a non-decreasing sequence, i.e.

EMN) <E (N) s E,(N) < ... < E\N). @.7

As a first step in orienting, pick a charge with the lowest partial energy — ifE,(N) = E.(N),
etc., this won’t be a unique choice! -— and rotate the configuration so that this charge is placed

at the north pole, 6 = ¢ = 0. Consider next the set of charges with the second lowest partial

energies: for instance, E,, E,, E,, if (2.7) has the special form

E =E<E =E =E<E... <E,. 2.8)

Find the (not necessarily unique) charge in this set closest to the north pole, and rotate the entire
configuration so that this second gharge is at zero longitude, 8 = 0. If the second charge
happens to be at the south pole, repeat the process with another charge from the set with the
third lowest partial energies. This scheme is adequate because the orientations are unique for
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trregular configurations, and the ambiguities are irrelevant for comparing symmetric
configurations.

The numerical reproducibility of the computations can be checked by comparing the
results obtained from minimizing runs starting at different random initial configurations. For
instance, for N = 84, the reproducibilities of some of the typical values that describe the

characteristics of the configurations --- e.g., the chiral states with the largest capture basin ---

are:
total energy Eq. (1.3) 3103. 478 717 096 13 digits (2.93)
lowest partial energy Eq. (1.3) 36. 885 477 8 digits (2.9b)
typical angular 6 0.039 85225 7 digits
(2.9¢)
coordinates (rad.) ¢ 0. 010 146 18 7 digits

The disparity in significant digits between the total and partial energies is not due to statistical
fluctuations or roundoff errors. Rather, it indicates that the computer runs end in a multiplicity
of shallow stability valleys that merge into the local energy minima. The relation of these
‘eigenmodes’ to the Hessian stability criterion, Eq. (2.6b), is discussed in Appendix A. The
basic numerical consequence is that the slight variations of the individual charge positions and
energies compensate in such a way that the total energies of the equilibrium configurations are
reproducible with a gain of five additional significant digits.
3. Locally Stable States of the Surface Coulomb Problem
A. Variation of the Number of States with the Parﬁcle Number N

The computer trials show that-when there are only a few interacting charges --- that is
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Nisintherange 2 < N < 14 --- the energy minimizing algorithm leads to a unique terminal

energy E(N) for every value of N. If the associated charge configurations are rotated into a

standard orientation by means of the conventions established in Section 2B, then the resulting
geometrical patterns C(N) are also unique. A new level of complexity appearsat N = 15. In

this case all the computer searches still converge to a unique final energy value E(15) = 80. 670
244 11; but the associated charge configurations are split into a pair of enantiomeric states: Out

of a total of 10* randomized initial configurations 4958, or 50%, of the energy minimizing

sequences terminate in a charge pattern C“(15) , which is the chiral transform of another pattern

CX(15) reached in the other 5042 energy minimizations.

Three distinct terminal configurations appear when N = 16. As indicated in Table VIII
in Appendix B, 75.7% of the 10' minimizing runs end at an energy of
E, (16) = 92. 911 655 30. The frequency of occurrence of this state, or ‘capture basin’, is in

turn almost evenly divided (37.7% and 38.0%) between two enantiomeric configurations

C", (16) and Cf (16). The remaining 24.3% of the computer searches end at a locally stable

state with a slightly higher energy, E,(16) = 92. 920 353 96. The associated charge

configuration C,(16) is a symmetric set of four rings outlining a series of four relatively rotated
squares with a charge at every corner. Figures 1(a) - 1(d) show these configurations in detail.
A summary of the multiplicities of the states M(N) for all N in the range 2 < N < 112

is given in Table I. As indicated in column two of the Table, M(15) = 2 and M (16) = 3
because every chiral configuration is counted as a separate state. Columns 3, 6, 9 and 11 also

list the cumulative number of states S
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The graph in Figure 2 shows that M. (N) increases at an exponential rate with N. In particular,

if we assume that

M) = Ae™ (3.2a)

then (3.1) implies

M.(N) = A(e™" - ")/ - ™). (3.2b)
A Newton-Raphson optimization shows that for 70 < N < 112, Eq. (3.2b) provides an excellent
fit of the data with
A =0382 and v = 0.0497. (3.2)
An exponential growth of the multiplicities of states is also observed in two-dimensional
arrays of pivoted magnets. Extensive experiments with n X n, 2 < n < 6 systems, initially

stirred by fluctuating magnetic fields, and then allowed to settle into locally stable configurations,

show that the nmumber of dlstmct patterns M™(N) is of the order of

M™NN) = 1.3 €%V, (3.3)

where N = n X n is the number of magnets [57, 58]. Figure 2 shows that the multiplicity of
the magnetic states grows much more rapidly than the multiplicity of the surface Coulomb states.
This trend is plausible because the magnets are coupled by a vector interaction that generates

complex domain structures.
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Table 1

Variation of the Number of States M(N) with the Particle Number N

N | MN) | Mc(N' | N | MN) | McN) | N | MN) | Mc(N) | N | M(N) | Mc(N)
2 1 29 2 57 9 8 19 505
3 1 30 3 43 58 18 86 46

4 1 31 1 59 9 87 39

5 1 32 2 60 11 200 8 32

6 1 33 1 61 13 89 37

7 1 34 2 62 6 90 44 703
8 1 35 5 54 63 4 91 37

9 1 36 2 64 10 92 49

10 1 9 37 3 65 6 239 93 41

11 1 38 2 66 4 94 55

12 1 39 4 67 2 95 35 920
13 1 40 6 71 68 9 9% 41

14 1 41 3 69 9 97 21

15 2 15 42 7 70 13 276 98 37

16 3 43 1 71 7 9 24

17 1 44 1 72 10 100 52 1095
18 1 45 3 86 73 10 101 8

19 1 46 8 74 22 102 87

20 1 22 47 10 75 6 331 103 52

21 2 48 3 76 12 104 56

22 2 49 2 77 9 105 70 1442
23 2 50 1 110 | 78 7 106 93

24 2 51 3 79 7 107 86

25 1 31 52 8 80 10 376 | 108 75

26 2 53 3 81 19 109 86

27 3 54 10 82 30 110 93 1875
28 2 55 11 145 | 83 31 111 88

56 8 84 30 112 91 2054

* Cumulative number of states, Eq. (3.1).
*M(N) > 1 for N > 50.
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There are several other N-body systems that exhibit an exponential growth of M(N)
with v ~ 0.07 and 0.16, [59]. In these statistical models the index v is identified with a

‘maximum configurational entropy’, i.e.

v = lim Al, In [MV)]. (3.4)

N-w

If these results are combined with the trends of the surface Coulomb problem and the
magnetic arrays, it is plausible to conjecture that in general the number of locally stable
states of N-body cooperative systems increases exponentially with N. This conjecture has
several practical consequences: If the exponential growth in the number of metastable states

qf the surface Coulomb problem continues to increase at the rates indicated in (3.2a) and
(3.2c), then the numerical simulation of large systems N > O (10%) involves severe
problems. For instance, the energy manifold describing the Coulomb interaction of 2000
charges constrained to the surface of a sphere would have about 5 x 10* locally stable

minima. Implementing numerical optimization or search algorithms and testing for stability
on such an intricately corrugated energy landscape would strain current computing resources
beyond their limits.

B. Energy Distributions

The electrostatic energy of the N- particle surface Coulomb problem, Eq. (2.1), is

given by explicitly by
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E(¢,,0;..: 0y, 0)) =

N M=

1 f:' {sing; sing sin® [-%(e,. - 8)] + sin? [%(d),. - $p2, 3.5
i>i

DO

where ¢,€[O, n] and 8, € [-x, =] are the spherical coordinates of the i** charge.

Geometrically, E(¢, ... 8,) corresponds to a surface in a 2N + 1 dimensional space. The

highest peaks on this energy ‘landscape’ are generated by configurations where some of the
charges are close together. The median range of heights is associated with randomly
distributed sets of coordinates - such as those used as the starting configurations for the
computer searches. The lowest points of the valleys and craters correspond to locally stable
configurations of the surface Coulomb problem. As indicated by (3.2a) and (3.2c), the

‘number of these local minima increases at an exponential rate with N. Geometrical
comparisons show that for a given value of N > 1, the charge configurations associated with

these minima all tend to be quite different. Nevertheless, the relative energy variations

between the lowest and highest local minima are less than 0.006% even for the largest

multiplicities of states, i.e. M(112) = 0.382 ¢ « 100.
B-1. Energies of Random Initial Configurations. Let EJR"" (N), 1 £ j < p, denote the

energies of a set of random distributions of N charges on the surface of a unit sphere, where
a total of p > 1 configurations are generated. Then ergodic arguments and rigorous results

of potential theory [56] both show that the average energy of the set of random states is given

by
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P
ER) = 1m L ¥ gy - I, (3.6)

p~= P j=1

where N2 is the Coulomb energy of a continuous uniform spherical surface charge
distribution with total charge N. Figure 3 and Table II show some of the results obtained

from computer simulations with p = 10°, and N varying throughout the range
6 < N < 100. The overall agreement is good although the computer generated averages

(E®="(N)) tend to exceed the theoretical values N%/2 by about 6%. This bias is also evident
in the asymmetric distribution of the maximum and minimum energy values about the mean
displayed in columns 3,4 and 5 of Table II. The underlying reason is that random selections

of angular coordinates include charge clusters [60], and these configurations boost the energy
values in (3.5).

The computer simulations of the random charge configurations can also be checked by

calculating their dipole moments, Eq. (1.2a). In an independent series of trials the ‘random

walk’ result {|d(N)|)p,, = 0.9213 N2, citedin (1.2b), was verified by generating 100

random configurations for every value of N in the range 3 < N < 64. Finally, by

combining (1.2b) and (3.6) in the invariant ratio

12
R = (IJ(N)DRM - 27,2 - 1.095 637, (3'7)
(ERm (NS |37 \
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it is possible to cross-check the consistency of the energy and dipole moment simulations.
The numbers listed in the last column of Table II yield an average ratio of R = 1.110, which

is within 1.3% of the theoretical value.

B-2. Minimum Energy States. Let E,(N) denote the lowest energy states of the N-body
surface Coulomb problem found by computer searches. A complete set of values, ranging

from E,(3) = 3" = 1.732.,, to E,(112) = 5618.044 88233, is listed in column 4 of

Table VIII in Appendix B. In the absence of rigorous analytical bounds we cannot exclude

the existence of other configurations with even lower energies. The sequence of crosses in

Fig. 3 shows the variation of E, with N in graphical form. On this coarse energy scale

E®) isa smooth monotonic function: The simple expression

E,(N) = 0.5N* - 0.5513 N*? - (3.8

fits the data with error bounds of 0.1% at N = 20 and 0.01% at N = 112. Using E,;(N) as

a smooth baseline, it is possible to construct scatterplots of the energy differences

E p(N) - E,(N) on an enlarged scale. However, searches for systematic deviations

resembling the energy peaks associated with atomic clusters [61) or analogues' of Thomas-

Fermi oscillations [62] have not led to any conclusive resuits [16, 40].

The functional form of E,,(N) has two physical interpretations [30]: () N2 is the

electrostatic energy of a uniform surface charge density — with total charge N — on a unit




Table 11

Electrostatic Energies and Dipole Moments of Random Spherical Charge Distributions

N  N2° (ER=(N)F o  Max (E™(N)} Min (E®*(N)}  R°
10 50 47.30 7.76 99.11 34.35 1.116
20 200 197.85 13.32 270.65 164.82 1.092
30 450 457.74 78.76 2594 395.85 1.107
40 800 835.63 198.4 3716 721.6 1.204
50 1250 1317.2 288.9 4416 1143 1.092
64 2048 2182.0 446.5 6229 1920 1.050
80 3200 3428.9 630.3 7824 3047 -

- 100 5000 5392.4 864.1 10 886 4851 -

* Eq. 3.6)

® standard deviation

“Eq. B.7)

sphere. In order to recover the energy of a distribution of N point charges it is necessary to

subtract the self-energies of a set of N uniformly charged spherical caps centered on these

points. For N > 1, it is plausible to approximate the caps by disks. Since the energy of an

infinitely thin disk of charge with radius a is E,, = 2rn%0%a® {0.4244}, where o is the charge

density [63, 64]; the total self-energy correction is of the order of NE, where ¢ = (ra?!.

For simplicity, suppose that all the disks have the same radius. Then the crudest measure of
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the total area covered by the N disks is the surface area of a unit sphere, i.e., Nna? = 4x.

Consequently, the self-energy correction is approximately given by

NE,, ~ 0.4244 N°; (3.9

which accounts for the second term in (3.8). More elaborate estimates that improve the

agreement with the empirical coefficient 0.5513 are outlined in reference [40]. (ii) Equation
(3.6) shows directly that N%2 can also be identified with the average energy of a set of N
unit charges randomly distributed over the surface of a unit sphere. In this case, the
O(~-N*?) term represents the correlation energies of the ordered Coulomb equilibrium states.

B-3. Energies of Metastable States. The most striking feature of the metastable states is
‘that their energies are closely bunched just above the minimum energy states. This trend

begins with the first metastable state at N = 16: As indicated in column 4 of Table VIII in

Appendix B, the energy difference AE (16) between the two states is

AE(16) = E, (16) - E, (16)
= 92.92035396 - 92.911 655 30, (3.10)
= 0.00869866;

and this implies AE (16)/E,(16) = 9.36 x 1075. Figures 1 (a) and 1 (c) show that this small

relative energy difference is not reflected in any geometric similarities between these
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two states. At the other extreme, for N = 112, the computer searches lead to 60 locally
stable states with distinct energy values --- 31 of these states occur in enantiomorphic pairs.

In this case it is convenient to describe the level spacings by the average energy difference

(AE (112)), i.e.,

(AE(112)) = [E, (112) - E, (112))/59,

3.11
= [5618.419 481 31 - 5618. 044 882 23]/59, 18

= ,006 349 14,

which indicates that the relative spacings are of the order

(AE(112))/E,(112) = 1.13 x 1075,

In general, (AE(N)) = [E, (N) - E, (M)]/(n - 1), for N charges, where n (> 1)

denotes the number of distinct energy levels. Table III shows the trends in level spacings for

Table III

Variation of the Average Energy Level Spacing (A E(N)) with the Number of Charges N

N 16 21 22 27 30 32
n 2 2 2 2 2 2
(AE(N) ~ 00870 00029  .02042 00699  .00045  .207 12
N 55 56 57 58 59 60
n 6 4 5 10 5 6
(AEQ)) 00549 05122 02216 01308 00436  .03007
N 107 108 109 110 111 112
n 52 47 56 59 52 60

(AEN)) .007 38  .007 37 .004 94 .004 01 .007 16 .006 35
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18 values of N ranging from ‘small’ to ‘large’. Since (AE(N))IE, (M) ~ 1078 for N > 100,

computer searches for the lowest energy states in complex systems of this type require high
precision. In fact this energy scale is so fine that neither the empirical fit (3.8), nor its graph
on Fig. 3, can discriminate between the ground and metastable states.

It is also interesting to display the distribution of the density of states. Table VIII
shows that for N = 112 there are 60 states with energies spread between 5618.044 and
5618.419. If these states were distributed uniformly there would be about 8 states per bin for
bins of width 0.05. With this particular choice of bin width, the first bin covers the energy
interval 5618.044 to 5618.094, but according to Table VIII contains only two states. The
second bin extends from 5618.094 to 5618.144, and contains no states; etc. Similarly, for
N = 111, the first bin of width 0.05 spans the interval 5515.293 to 5515.343, and contains
only the ground state; etc. The histogram in Fig. 4 shows the combined statistics for
N = 111 and 112 — a total of 112 states. Clearly the level distribution is not uniform.
There is a dip, or ‘level-repulsion’, in the energy bin just above the ground state; a
pronounced maximum in the middle of the range; and an eventual decrease in the density of
the highest levels. This density profile formally resembles the Wigner distribution of the
energy level spacings of large ‘random’ Hamiltonian systems [65].

Figure 5 shows a semi-log plot of the density of states weighted by the probability of
occurrence. It is a straightforward matter to include this additional information.

Specifically, for N = 112, Table VIII shows that the two states falling into the first energy
bin between 5618.044 and 5618.094 appeared 620 times in 1000 computer searches starting

from different random configurations. On average, therefore, their relative probability of
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occurrence is 62%. Similarly, for N = 111, the state in the first energy bin occurred in 48%
of the computer trials. The combined average for these three states therefore is 55%; and this
is the value indicated for the first bin in Fig. 5. The rest of the histogram can be obtained by
similar means.

the two histograms H
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maximum of the probability density occurs near the minimum energy states. In general, this
implies that for values of N S 100 there is about a 95% probability that a computer search will
end at an energy level within 0.003% of the ground state. But it is difficuit to improve this

precision. In the range 100 < N < 112, the average probability that a computer minimization

will actually reach the minimum energy state is only 35%. Of course, this result depends on the
qhoice of minimizing algorithm. Nevertheless, similar statistical behavior occurs in the
distribution of patterns in magnetic cooperative arrays [58]. All of these systems display the
same basic trend: as the number of interacting objects increases, the statistical weight of the
ground state decreases.

The survey of metastable states summarized in Table VIII is based on a total of about
7 x 10° computer trials. Rare states, with probabilities of occurrence as low as 0.01% are

found for N = 21, 30, 42, 48, 58, and 61. Possibly there are additional states with still smaller
capture basins. Certainly it is plausible that for N = 112 some states on the high energy tail of
the histogram in Fig. 4 have been missed due to limited statistics (only 1000 energy minimizing
searches). But t:he essential observation is that none of the numerical trials — for any value of .
N -— has yet turned up any trace of isolated energy levels; that is, single levels separated by

large ‘band gaps’ (>> (AE(N))) from the cluster of states above the ground state. It remains
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to be seen whether this trend continues for still larger values of N.

B-4. Energies of Individual Charges. The total electrostatic energy of a locally stable state
of N charges can be represented as the sum of the partial energies associated with the individual
charges. These partial energies have two interesting properties: (1) The variation of the
individual charge energies within a configuration is generally much larger than the variation of
the total energy berween configurations. And (2), since the exiergy apportioned to a charge is
simply the sum of the inverse distances to all the other charges, the variation of the individual
energies is a measure of the geometric regularity of the configurations. Fig. 6 illustrates some
of these energy relations. Specifically, let E, (N) denote the total energy of the m® staté of N

charges. Then a slight extension of (1.3) shows that

N

N
E,N) = Y E,, O E =2 % [f-rt G

i=1 jei

where E,; (N) is the partial energy of the i* charge in the m™ state of N objects. The scatter
plot in Fig. 6 begins at N = 16. This entry corresponds to the following array of total and

partial energies, cf. (3.10):
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N = 16; ground state
Fig. 1(c) and Fig. 1(d)

E, (16) = 92.911 655 30

E,, (16) = 5.762 143 2
'

E.. (16) = 5.762 143 2

E,, (16) = 5.821 923 5
‘

E,. (16) = 5.821 923 5

N = 16; metastable state
Fig. 1(a) and Fig. 1(b)

E, (16) = 92.920 353 96

E,, (16) = 5.793 787 0
'

E,, (16) = 5.793 787 0

E,, (16) = 5.821 257 1
'

E,c (16) = 5.821 257 1

(3.13)

The spread of partial energies in the ground state is E, ,, (16) - E,, (16) = 0.059 780 3; and in
the metastable state E,,, (16) - E;, (16) = 0.027 470 1. Consequently, the average maximum
energy variation within these configurations is 0.043 625, whereas the total energy difference
berween the configurations is only E, (16) - E, (16) = 0.008 698 66 --- smaller by a factor of
5. This disparity is also reflected in the individual charge energies: Twelve charges in the
ground state, E,; (16), ..., E,,; (16), have greater energies than any of the charges in the
metastable state!

In the general case, when there are n distinct energy levels associated with N charges,

the average maximum variation of partial energies within the configurations (A E,__(N)) is given

by
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(AE,,, (V) —% Yy - By @0 (3.14)
Table IV

Variation of the Partial Energy Differences (A E,,(N)) Within Configurations

N 6 21 .22 32 55 60 111 112
043 055 .030 .054 .117 .098 211 208
(AE,, N
RNY® 501 189 144 026 213 3.19 295 327
* Eq. (3.14)
» Eq. (3.15)

Table IV shows that this energy spread is a slowly increasing function of N. The differences in

partial and total energies can be combined in the ratio

RV = L™ Energy Differences Within Configurations (315
(AE(N)) Energy Differences Between Configurations

which is the ordinate of the scatter plot in Fig. 6. Some representative values are also listed in
Table IV. Clearly most of the points in Fig. 6 fall into the band between 5 < R(N) < 50.

This demonstrates that the scale of total energy differences between successive metastable states
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is much finer than the variation of the individual charge energies. A complementary pattern is
exhibited by the stabilities: Egs. (2.9a) and (2.9b) show that the numerical reproducibilities of
the total energies of the configurations generally exceed the reproducibilities of the partial
energies by five orders of magnitude.

The contrast between individual and collective energies is also illustrated by the following
example: Suppose that the partial energy of a charge has the value 36.935 241. Then it is easy
to verify from the computer results that this charge cannot be a constituent of any locally stable
state with either N < 83 or N > 85; it must belong to one of the 30 configurations with
N = 84. However, there is no finer scale of energy rankings to help in locating this charge.
Everyone of the 30 states is comprised of sets of 84 partial energies that straddle the value
36. 935 241. Consequently all of these states have to be examined in detail before it can be
established that 36.935 241 corresponds to E,qs, (84) — the partial energy of the 37" charge in
the 10* equilibrium state of 84 objects. This assignment is unique because all .84 partial energies
in the 10® state are different, and E,q,;, (84) * E,; (84) forall1 < i s 84 and m # 10. The
only remaining ambiguity is geometric: as indicated in Table VIII, E,, (84) has two enantiomeric
configurations.

Equation (3.12) shows that the partial energy of a charge is proportional to the sum of
its inverse distances to all the other charges. This implies that highly symmetric equilibrium
configurations that ‘look alike’ from every charge or vertex have unique partial energies, i.e.,
E.;(N) = E(N)/N forall 1 <i s N. Indeed, this is the case for three of the Platonic solids,
the tetrahedron, octahedron (dipyramid), and icosahedron, whose vertices are the equilibrium

positions of the surface Coulomb problem for N = 4, 6, and 12 respectively. The partial

34




energies are also unique for N =8 and 24, even though these configurations are not included
among the standard semi-regular (Archimedean) polyhedra. Clearly, less symmetric charge
distributions will have a greater variety of reciprocal distances, and this dispersion can be used
- as a measure of geometric irregularity analogous to the angular diversity ratio (1.1): If

n, (N, m) denotes the number of distinct partial charge energies that occur in the m® state of N

objects, then the corresponding energy diversity ratio (%) is given by

D,(N,m) = 100 == (z""). (3.16)

In the range 2 < N < 112, the computer trials yield 1248 equilibrium states with distinct

energies; 806 of these states occur in enantiomorphic pairs, cf. Table I. The associated energy
diversity ratios are listed in column 9 of Table VIII in Appendix B, and displayed graphically
in Fig. 7. Two trends are evident: (i) D.(N, m) is a slowly increasing function of N. The first
configuration that is so irregular that all of its partial charge energies are different occurs at

N = 35; i.e., D.(35,4) = 100%. By the time N reaches 102, 34 out of a total of 54 locally
stable states have energy diversity ratios in excess of 95%. This is another conﬁrmation of the
basic trend that increasing complexity is correlated with greater geometric irregularity. (i)
Figure 7 also shows that the energy diversity ratios tend to cluster in a series of bands near 17%,
 24%, 50%, 75%, and 100%. It is plausible that this regularity is connected with a deeper

symmetry of the surface Coulomb problem.
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4 Geometric Properties of the Surface Coulomb States
The locally stable solutions of the N-charge surface Coulomb problem are constrained

solely by spherical boundary conditions and the O(4) symmetry of the Coulomb interaction. The
exponential growth of the multiplicity of solutions — M(N) ~ e*%¥, Eq. (3.2a) —- shows that

these restrictions are compatible with a great variety of geometric structures. Only in the
simplest systems is there an overlap with the criteria of strict regularity that underlie the classical
theories of polygons and polyhedra {13]. For instance, the Coulomb solution for N = 3
corresponds to an equilateral triangle inscribed in a great circle: this is the simplest example of
a regular polygon, i.e., a plane polygon with equal interior angles and equal sides. Similarly,
regular polyhedra are bounded by congruent regular polygons and have congruent vertices. Only
@e solutions for N = 4 (tetrahedron), N = 6 (dipyramid), and N = 12 (icosahedron) share this
high degree of symmetry. The other Platonic solids, the cube with 8 vertices, and the
dodecahedron with 20 vertices, do not correspond to solutions of either the surface Coulomb or
Tammes problems. The semi-regular polyhedra are also bounded by regular polygons with
congruent vertices and edges, but the polygons do not all have to be congruent to each other.
This class of objects includes the thirteen Archimedean polyhedra as well as infinite sets of semi-
regular prisms and anti-prisms. None of the surface Coulomb configurations match any of these
semi-regular polybedra. In particular, the well known ‘bucky ball’, or truncated icosahedron,

associated with Cg, is not a solution of either the Tammes or surface Coulomb problems for
N = 60.

Every Archimedean polyhedron has a dual formed by joining a point that is above the

center of each face of the polyhedron to equivalent points above all the neighboring faces. The
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lines connecting these points are constrained to intersect the edges of the original polyhedron.
The resulting duals of the semi-regular polyhedra have congruent faces but none of these faces
are regular polygons. These duals are also less symmetric than the Archimedean figures because
not all of their vertices lie on a single sphere; consequently none of the dual polyhedra coincide
with any of the solutions of the surface Coulomb problem [66, 67, 68]. However, there is an
interesting ‘near miss’ for N = 32. The pentakis dodecahedron is a convex polyhedron with 32
vertices, 90 edges, and 60 faces composed of congruent isosceles triangles: This object is the
dual of the truncated icosahedron which has 60 vertices and 32 faces. The two types of edges
of the pentakis dodecahedron intercept angles of
sint (2) = 0.729 727 656
3 “4.1)

-;.[n - sin™! (-i-) ~tan"1(2)] = 0.652 358 139

as seen from the center of symmetry, i.e., the origin of the inter-sphere [67, 68]. These values
agree to within six sigpificant figures with the corresponding angles of the minimum energy
Coulomb configuration for N = 32 (see the entries on lines 13 and 14 of Table V). A pictorial
comparison of the pentakis polyhedron and the Coulomb configuration would show that they are
essentially identical. But pentakis breaks strict spherical symmetry because its 32 vertices are
distributed over two concentric spheres whose diameters differ by 2.58%. Consequently, the
ratio of the two edge lengths of the pentakis dodecahedron, 1.127 322, deviates by 0.77% from
tﬁe corresponding edge ratio, 1.118 600, of the Coulomb solution. In this instance, the surface

Coulomb problem actually leads to a more symmetric ‘dual’ partner of an Archimedean
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polyhedron than the original construction of pentakis by Catalan in 1862 [69]. Moreover, the
minimum energy solution for N = 32 is not only geometrically regular, but it is also robust:
in therange 12 < N < 65, it is the only equilibrium configuration common to both the Coulomb
and logarithmic interactions [16].

In addition to the 5 Platonic solids and 26 Archimedean polyhedra and their duals, there
are only 92 other convex polyhedra whose faces are entirely composed of regular polygons ---
generally not all of the same kind [17, 18]. These objects are geometrically irregular or non-
uniform in the sense that there are no symmetry operations that transform a particular vertex into
each of the other vertices in turn. Twenty-four of these non-uniform polyhedra may be inscribed
in a sphere [68]. By comparing the corresponding numbers of vertices and faces it is easy to
verify that none of these 24 objects match any of the surface Coulomb equilibrium
;;)nﬁgtnaﬁons. In summary, therefore, out of a total of 2054 surface Coulomb states and 123
convex polyhedra derived from classical geometry, there are only three configurations common

to both sets. This number is also an upper bound because further extensions of the Coulomb
problem to larger systems with N > 112 cannot yield any additional matches. These resuits

show that the locally stable states of complex cooperative systems of this kind tend to have
symmetries that differ from those that characterize the regular polyhedral configurations of
classical geometry.

- A. Dipole Moments. The distribution of the dipole moments of the surface Coulomb states
can be used to answer two basic questions: (1) Are the configurations for large values of N so
irregular that they are approximately equivalent to random networks of points on a sphere? And

furthermore, (2) do these networks approach some kind of universal asymptotic statistical
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distribution that is independent of the laws of repulsion that act between the individual charges?
To settle these issues, it is convenient to recall from Eq. (1.2b) that the average value of the

dipole moment of a random configuration of N unit changes on a sphere is an increasing function
of N, i.e., (|d (N)])py ~ N¥2. As indicated in connection with Eq. (3.7), the applicability
of this ‘random walk’ result to the Coulomb problem can be confirmed by computer trials. In
particular then for N = 100, the expectation value of the dipole moment of a random distribution

is quite large, (|d (100) |}y, = 92; whereas the entries in column 5 of Table VIII show

that 0 < |d (100)| < 0.0037 for all 52 of the Coulomb states found by computer searches.
This upper bound indicates that the metastable state with the highest energy and nearly maximal
"angular diversity (see below) for N = 100 has a dipole moment that is about 4 x 107 smaller
than that expected for a random configuration. Figure 8 shows that this trend of small dipole

moments prevails for all the Coulomb configurations in the range N < 112. The logarithmic
ordinate scale of the graph extends down to 107, which is near the limit of numerical accuracy

for large systems, N ~ O (100). Table VIII shows that states with vanishing dipole moments
are quite common for small values of N, but tend to become less frequent as N approaches 100.
Nevertheless, they don’t disappear entirely: the ground state with the largest capture basin for
N = 112 apparently has a vanishing moment. These results clearly show that the charge
distributions of the surface Coulomb configurations have intrinsic regularities that persist despite
the lack of the congruences or symmetries associated with the polyhedra of classical geometry.

There are systematic variations of the dipole moments that depend on the strength of the
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force acting between the charges. According to Eq. (2.5), if the interaction is logarithmic, or

‘soft’, all locally stable configurations have vanishing dipole moments [16]. At the other

extreme, the ‘hard’ Tammes potential, |F; - 7[™, n ~ =, leads to states with sizable moments.

Spot checks of some of the Tammes configurations found by Kottwitz’s computer searches [30]

yield moments larger than unity. All the available information can be summarized as follows:

Force Law Size of Dipole Moment Source of Result
I’-.: - i;'*l 0 analytxcal 1denuty, Eq. (2.5)
|7 - ;-}|-2 0 - 102 computer trials (N < 112) (4.2)
|F, - ?J.l"', n>1 o) computer trials (N < 90)
] random (8NJ3m)2 combinatorial lemma, Eq. (1.2b)

Obviously, in the range 2 < N < O(100), there is no tendency for a convergence of the dipole
moments associated with the logarithmic, Coulomb, or Tammes interactions. This diversity
suggests the conjecture that for large values of N different force laws lead to distinct asymptotic
distributions of spherical charge networks. Comparisons of trends in the Tammes and Coulomb
angles (see Section 4E-1) also support this surmise.

B. Distribnti_ons of Angles. Another measure of the regularity of the surface Coulomb
configurations is the angular diversity ratio introduced in Eq. (1.1). This has a simple basis:

If 7, and T, specify the locations of two charges on the surface of a sphere with unit radius, then

the set of N(N-1)/2 angles, ¥, = cos™ (7, - ), where ¥, <180°, 1 <i,jsN,i#j,




describes the geometry of the charge distribution. The degeneracy of this set is a measure of the
symmetry of the configuration. For instance, if 5 points are distributed arbitrarily over the
surface of a sphere, there will generally be 5 x 4/2 = 10 distinct angles between pairs of points.
However, in the case of the surface Coulomb problem, the unique equilibrium arrangement of
5 charges is a triangular dipyramid — one charge at the north pole, another at the south pole,
and the remaining three charges equally spaced around the equator. Obviously only three distinct
angles appear between any pair of charges in this highly symmetric configuration: 180° occurs
once, 120° occurs three times, and 90° occurs six times. The corresponding angular diversity

ratio therefore has the low value of

number of distinct angles _ 100 > - 30% 4.3)
NN -1)2 10

D(N) = 100

Similarly, the clustering of the irregular N = 11 and 13 configurations around the highly

symmetric icosahedron at N = 12 is immediately apparent from the D, fluctuations, without the

need for any graphical comparisons; viz.

N D, (V) D, (V) d |
11 36.4% 45.5% 0.0132
12 4.5% 8.3% 0 4.4)
13 37.2% 46.2% 0.0088
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This array shows that all three indices of regularity — the angular diversity ratio D,, the energy
diversity ratio D, [Eq. (3.16)], and the dipole moment |d| — yield consistent results. These

correlations also appear in the detailed list of values in columns 5, 9, and 10 of Table VIII in
Appendix B, as well as in the graphical summaﬁ&s in Fig. 9 and Fig. 10. In particular, the
parallel increase of both the angular and energy diversity ratios confirms once again the general
conjecture that increasing complexity tends to be associated with decreasing symmetry. For
instance, the first configuration that is so irregular that all of its vertices are inequivalent

(D, = 100%), and most of its edges have different lengths (D, = 99.2%) occurs at N = 35.

Fig. 9 sho.ws the development of this trend in graphical form. At N = 102, 30 out of a total

of 54 locally stable states have energy and angular diversity ratios in excess of 95%. These
irregularities are pervasive for N ~ O(100).
The distribution of values in the sets of angles ¢ is also useful for comparing the

structures of different charge configurations belonging to the same value of N. Since the data
in Section 3B-3 show that the energies of all of these locally stable states are very nearly the
same -— within 0.007% for N = 102 — it is possible that some of these states also have
geometrical resemblances. Well known examples of sets of complex configurations with
common ‘backbones’ and minor ‘peripheral’ variations include the tautomers and conformers of
structural chemistry. However, everyone of the surface Coulomb states with non-identical

energies appears to have a distinct structure. For instance, at N = 102, there are 87

configurations (cf. Table I) each of which is described by a ¥,; - set with 5151 angles.
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Comparisons show that there are 33 sets that occur twice: each matching pair has the same
energy and is geometrically related by an improper isometry --- evidently these are just the

enantiomeric configurations. Apart from these degeneracies, there are then a total of 87- 66/2

= 54 different states. Further comparisons of the associated angular sets, wfj, 1 <k<54,

show that the maximum fraction of coincidences among any pair of these sets is bounded by 9%.
Computer surveys for all N in the range 50 < N < 112, where multiple states become more

frequent, indicate that this overlap estimate is actually a general result; i.e., if V(N) denotes the

fraction of common angles, then

x o, 4.5
:W(‘I’.j n '”u) < 0'09 ( )

N) = NN -DJ2 ,

where k # [, and the set intersections exclude enantiomeric pairs. The low value of this overlap

ratio shows that it is implausible that configurations with non-identical energies share any major
structural features such as common ‘backbones’.

The overlap bound in (4.5) is based on very conservative angle matching criteria. When

N 3 100, the precision of the angular coordinates of the individual charges in rare states can
decrease to about one part in 10°. This is degraded further by the computation of the inter-
particle angle sets ;. Finally, the coarseness of the matching may be relaxed even more to

ensure that all the enantiomeric states are correctly paired up. Consequently, the actual values

of the overlap ratios V(N) may be significantly smaller than the bound shown in (4.5). For
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example, at N = 84, all 16 states with distinct energies are sufficiently irregular so that the

positioning conventions of Section 2B yield unique orientations. Under these circumstances, the
charge coordinates of all of these states -— which are known to 7 ﬁgures; (2.9¢) --- can be
compared directly.. Extensive spot checks have failed to turn up even one matching charge
position, apart from the common fixed point at the north pole. It seems, therefore, that the
exponential increase in the number of states for larger values of N(> 50) is accompanied by a
tremendous proliferation of geometric structures.

C. Coulomb Polyhedra: Regular Configurations. The coexistence of order and disorder
in the geometric structure of the surface Coulomb states is illustrated in Fig. 11. This diagram
shows the equilibrium configuration of 19 charges on the surface of a sphere. The apparent
symmetry of this arrangement is highlighted by the auxiliary polyhedron whose vertices coincide

with the charge positions. The faces and edges of this polyhedron can be constructed with the

help of some computer graphics: Given N ( >3) points on the surface of the sphere, the set of
all combinations of 3 points determines a maximum of N(N-1)(N-2)/6 planes. Associated
with each plane and triple of points --- located by the unit vectors Fi»J = @, B, Y -— is another
vector 7, extending from the center of the sphere to the plane and perpendicular to it. Since the

plane and sphere intersect in a circle (C

epy) all the scalar products F, - F; are equal: Suppose

now that 7, ranges over the positions of all the charges nor included in the F; triplet — i.e., the
set {F; }f\Fa, Ty, T, - and furthermore that F, - F, < F; - F,; then the plane containing the

charges a, B, y is a face of the polyhedron. Geometrically, this inequality simply means that
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the spherical cap bounded by C,,, contains no other charges. In cases where two or more

Y
charge triplets determine coincident planes, the associated polyhedron face is bounded by four
or more vertices. Figure 11 includes an example of this situation. The end result of this
construction is that the éoulomb polyhedron for N = 19 has a total of 33 faces. The
corresponding number of edges (e) then follows. from Euler’s formula
N+f-2=ce,
or . (4.6)
19 + 33 -2 = 50.
Column 11 of Table VIII in Appendix B lists the number of faces (f) of the Coulomb polyhedra
for all configurations in the range 4 < N < 112.
The symmetries of the Coulomb polyhedron in Fig. 11 are reflected in the low values of

the energy diversity, D, = 7/19 = 368% [Eq. (3.16)], and the angular diversity,
D, = 52/171 ~ 39.4% [Eq. (4.3)]. Inparticular — apart from the charge at the north pole with
the least partial energy — all the other 18 charges occur in pairs: each partner with the same
partial energy and longitude, but the two charges differing by 180° in latitude. This symmetric
pattern has a small but non-vanishing dipole moment, |d(19)| = 0.000 135, pointing towards

the north pole. The contrasting irregular features of this polyhedron arise from a lack of
congruence among the edge lengths. No more than four edges have equal lengths. In fact, the
50 edges are composed of 10 groups of 4 congruent edges and 5 groups of 2 congruent edges.
" Consequently the polygonal faces in Fig. 11 are too irregular to fit into the standard set of non-

uniform polyhedra [17,18].

45




A useful measure of the degree of congruence in the Coulomb polyhedra is the ratio of
the number of distinct edge lengths to the total number of edges. Since the edge lengths are
determined by the central angles between the corresponding vertices, this congruence measure

is equivalent to a nearest neighbor angular diversity ratio analogous to (4.3), viz.

m” number of distinct edge lengths (1)
D =1 4.7
« () = 100 total number of edges (e) @D

Wherea§ the angular diversity D, is a global index of the variety of all possible angles between

charges, D;” is a strictly local measure that takes into account only the diversity of angles

between adjacent charges. In the case of the N = 19 polyhedron, both the local and global

measures of regularity yield nearly the same result
an 15 52 _
D, (19) = 100 x — = 30.0% -- 304% = 100x — = D,(19). (4.8)
50 171

Computer surveys of all the other Coulomb polyhedra with N vertices in the range

4 < N < 112 show a similar equivalence. If this trend extends beyond N ~ 112, it would
simplify the identification of regular charge patterns: estimates of D, (N) for N> 1 require

at most the comparison of 3N nearest neighbor angles.
Although the dominant geometric trend of the Coulomb states is one of increasing

irregularity for larger values of N, the sporadic appearance of small percentages among the
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diversity ratios listed in columns 9 and 10 of Table VIII shows that some ordered patterns persist
~ up to the limits of the computer explorations. The distribution of these special states is indicated
graphically by the set of points in.the 0 - 20% bands in Fig. 7 and Fig. 9. Quantitative
information concerning the most regular configurations is summarized in Table V. For
reference, the entries in the first line recapitulate the data for the icosahedron (N = 12) — the
largest Platonic solid whose vertices coincide with the solutions of the logarithmic, Coulomb,
and Tammes problems. Comparisons with the indices for N = 16, 24, 32, and 72 show that
these new polyhedra are also highly symmetric. The two N = 16 configurations are depicted
in Figs. 1(a) - 1(d): they illustrate the interesting point that the lowest energy state is not
necessarily the most symmetric. Table VIII shows that this situation recurs at several other
yalum of N; e.g., the most symmetric N = 82 pattern is ranked eighth in order of increasing
energy, and has an extremely low probability of occurrence. The N = 24 Coulomb polyhedron
resembles the snub cube, one of the semi-regular Archimedean solids. However, the Coulomb
interactions distort the symmetry of the classical polyhedron: Whereas the snub cube has 32
triangular and 6 square faces, all with equal edges, the faces of the Coulomb polyhedron include
24 scalex?e triangles [41]. The N = 32 situation corresponds to the ‘near miss’ of the pentakis
dodecahedron discussed previously in connection with Eq. (4.1). In this case the Coulomb
polyhedron is slightly more symmetric than its classical counterpart. The lowest energy Coulomb
state for N = 72 is also conspicuously symmetric. All faces of this polyhedron are triangular.
There is no resemblance to the aspherical N = 72 ‘fullerene’ cage containing 12 pentagons and
26 hexagons [70]. '
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Table V

Regular Coulomb Polyhedra

Nt E f elf® n’ an Nearest neighbor Multiplicity®
D, (%Y
angles (degrees)
12 49.165 20 30/1 1 33 63. 4349 30
16+ 92.911 28 42/4 2 9.5 48.9362 6
52.5452 12
54.6580 12
61.8004 12
16 92.920 26 40/4 2 10.0 50.1269 8
52.0044 8
54.2578 16
. 63.0252 8
24" 223.347 38 60/3 1 5.0 42.0653 24
45.0400 24
45.7102 12
32 . 412.261 60 90/2 2 2.2 37.3773 60
41.8103 30
72  2255.001 140 210/4 2 1.9 24.4917 60
24.9262 30
25.4334 60
28.2068 60
*Number of charges or vertices. Diversity ratio, Eq. (4.7).
*Coulomb energy, Eq. (3.5). *Number of times this angle appears.

‘Number of faces, Eq. (4.6).

‘Number of edges/distinct edge lengths, Eq. (4.7).

‘Number of distinct partial energies, Eq. (3.16).
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The entries in Table V do not continue beyond N = 72 because the more complex
symmetric polyhedra contain at least 11 different nearest neighbor angles. Nevertheless, the
ordered patterns stand out clearly among the increasing variety of irregular polyhedra. For
example, at N = 112, there are at least 60 locally stable states with distinct energies. The first,

second, and tenth levels are clearly different because their nearest neighbor ratios

D;” [Eq. (4.7)] are 10.5%, 8.2%, and 24.1% respectively; all the other states have angular

diversities exceeding 45%. The marked regularity of the second level is also apparent from the
small number of partial charge energies — equivalent to 10 types of polyhedron vertices --- and
the symmetric grouping of the 330 nearest neighbor angles: these occur in 26 sets of 12 equal
angles, and a residual set of 18 angles, also all alike. Unraveling the complex order of these
- large polyhedra is a challenging problem in ‘physical’ geometry.

D.  Enantiomorphic Configurations. A set of points on the sphere may be transformed by
isometries or congruence mappings that preserve the distances between all pairs of points. All
isometries, in turn, can be built up from three basic types of transformations [71]: (i) rotations
about an axis; (ii) mirror reflections in a plane; and (iii) parallel displacements of all points. If
the mappings are restricted to a fixed sphere, parallel displacements play no role, and the
congruence transformations reduce to proper isometries or (rigid body) rotations, and rotatory
reflections composed of a reflection and a rotation whose axis is perpendicular to the mirror

(13, 72]. Cemtral inversions, in which the coordinates of all points are reflected in the origin

of the sphere, i.e., F -~ ~ F, are special cases of rotatory reflections in which the rotation is a

half-turn.
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If a pattern C; of identical charges on the surface of a sphere is sufficiently irregular ---
though not necessarily random - then the only isometric mapping, I: C, - Cf, that yields a

final configuration C, indistinguishable from the initial state is the identity transformation. In
contrast, highly symmetric configurations such as the icosahedron are invariant under a great
variety of isometric transformations, e.g. the composite group A, x C; [14]. The set of

solutions of the surface Coulomb, logarithmic, and Tammes problems interpolates between these
two extremes: In all three cases larger values of N are associated with less symmetric point
groups {16, 30, 41, 42]. However, as emphasized in connection with the dipole moments in
Section 4A, even Coulomb states whose only isometric symmetry is th_é identity transformation

have ordered structures.

When N > 50, the surface Coulomb states tend to cluster in pairs, each with the same
sequence of partial energies, equal total energy, and nearly equal probability of occurrence.
Suppose that C* (N) and C® (N) denote such a pair of states. Since the orientation conventions

established in Section 2B automatically include rotational degeneracies, it remains to check

whether these states are related by an improper isometry. In practise, this mirror symmetry can
be verified by picking a state, say C* (N), and reflecting it in an arbitrary plane through the
center of the sphere. The resulting configuration is then rotated so that the charge with the

lowest partial energy is positioned at the north pole, ® = ¢ = 0, and the charge with the next
lowest partial energy is at zero longitude, 8 = 0. If all the partial energies are different, this.

orientation is unique, and the final configuration will coincide with C* (N). In case there is a
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degeneracy in the partial energies, some auxiliary comparisons may be required.
The distinctions between proper and improper isometries can be illustrated with two
simple examples: Figure 1(b) is a plan view of the symmetric four-ring structure of the

N = 16 metastable Coulomb solution, C, (16). Obviously this pattern is invariant under 90°

rotations and reflections -— if the rings are copied on a transparency, and the transparency is
flipped over, the reversed image will coincide with the original pattern. This symmetry is
broken by the greater complexity of the two N = 16 ground states. If Fig. 1(d) is copied, the
image on the flipped transparency cannot be rotated into coincidence with the original pattern,
but it will match the other ground state configuration. In general, any configuration that cannot
be brought into coincidence with its mirror image by rotations is chiral or enantiomorphic.

-Hence the familiar example of right (R) and left (L) handedness suggests the notation

CF (16) and C- (16) for the two N = 16 chiral ground states. But for arbitrary patterns — in

fact, even the simple perspective view in Fig. 1 (c) — there are no obvious pictorial cues of
handedness, or a ‘screw-semse’, and chirality has to be checked by other means such as
exhaustive computer comparisons [73].

The asterisks in column 3 of Table VI mark the enantiomeric states of the surface
Coulomb problem. Comparisons show that N = 15 is the common threshold for the appearance
of chiral configurations in the surface Coulomb, logarithmic, and Tammes problems [14, 16,
39]. Furthermore, in the range 15 < N < 65, the ground states of the logarithmic potential are
chiral if and only if the ground states of the associated surface Coulomb problem are chiral [16].

However, the results for N = 15, 16, 19, 21, etc., show that there is no such one-to-one
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correspondence between the ground states of the surface Coulomb and Tammes problems {30].

There are interesting connections between chirality, ‘chaos’, symmetry breaking, and

cryptography in the surface Coulomb problem. Let M [dm a1s)] - Cf (15) represent the
mapping of a randomly chosen initial state of 15 charges, C:m (15), to one of the pair of chiral
ground states, Cf (15) by means of an energy minimizing algorithm M. Suppose further that
the initial configuration is sufficiently irregular so that it can be verified that C:m (15) is indeed

a chiral state with a mirror image Cp, (15). Then it can be shown that the minimizing

algorithm of Section 2B, as implemented on a computer, preserves chirality. (An analytic
“analogue is discussed in [74].) This leads to an array of parallel mappings that can be extended
to include many initial states:

strings of (pseudo) random numbers

{ {

sets of (pseudo) random -
el stes {Cham (15) {Cham (15)}
l l (4.9)
locally stable energy minima:
. G (5) G (15

This diagram shows that the net effect of the chirality preserving map M is to transfer the ‘L’

and ‘R’ labels from the ground states up to the level of the random initial states, and to split

these into two corresponding sub-sets {CRM(IS)} and {d'm (15)}. Since the initial configurations
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are distributed uniformly over the surface of the sphere, slight changes in the angular coordinates

of the charges in any particular state CRM (15) can transform it into a d’m (15) state, and vice

versa. Consequently the end result of an energy minimization can be sensitively affected by

slight perturbations of the initial conditions: This mix of randomized states and unstable

Chiral symmetry breaking can occur in a variety of ways. For instance, varying the
index n in the power law |F; - 7;|™ can induce transitions between chiral and non-chiral states.
The simplest illustration is provided by N = 16. In this case the ultra-repulsive Tammes
potential |F; - 7™, n ~ =, can be approximated by choosing n = 1310 720 {15, 30}. Both
~ geometrical arguments [76] and computer trials then show that the N = 16 Tammes solution is
a symmetric four-ring structure closely resembling the pattern in Figs. 1(a) and 1(b). (The
latitudes of the rings are =+ 13.632° and + 51.490° in the Tammes case, and

+ 11.342° and + 51.684° in the Coulomb case.) But the lowest energy solution for the surface

Coulomb problem is quite different: It is split into a pair of chiral states one of which is shown
in Figs. 1(c) and 1(d). Evidently then, as the potential index n decreases from 1 310720 to 1,

there must be at least one threshold where chiral states appear.
The chiral ‘L’ and ‘R’ indices are equivalent to a binary alphabet. In principle, therefore,

it is possible to construct any desired string or ‘message’ with an appropriate series of

Cf (15) and Cf (15) configurations. But as (4.9) -shows, each ground state configuration can

be enciphered in an enormous number of ways by the mappings M [{Chx (15)}] - Cf L as).
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For instance, on a double precision computer, the number of initial states with a particular
chirality can easily exceed 10°. The element of ambiguity or concealment then lies in the
assignment of a specific ‘L’ or ‘R’ label to any one of these random initial states. Although it
is easy to verify that a particular state is chiral, the spatial arrangement of charges is usually too

complex to exhibit an obvious ‘handedness’ --- it is necessary to go through an explicit energy
minimizing sequence leading to either C; (15) or C- (15) in order to identify whether an initial
state is ‘L’ or ‘R’.

The strings of random numbers in the top line of (4.9) refer to the angular positions of

the charges in the initial configurations. In particular, if the latitudes and longitudes of the

charges are speciﬂed to an accuracy of 12 decimals, then the configurations Cﬁ, (15) can be

represented by strings of 15 X 2 X 12 nominally random digits, {d,§*, d; = 0, 1, .., 9. The

security of this ‘chiral-energy’ encipherment therefore relies both on the algorithmic complexity

of the mapping M and the tremendous redundancy of the correspondence

&, (15) ~~ {(d¥® ~ Ror L. (4.10)

In analogy with other schemes involving ‘trap-door’ or ‘one-way’ functions [77], eq. (4.10) is
hard to invert because the reversion is a ser-valued function that associates an entire set with a
particular input [78].

In practice, the charge coordinates of the initial configurations are derived from

deterministic pseudo-random number generators. The complete sequence of the chiral-energy
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encipherment is therefore a combination of (4.9) and (4.10), i.e.,

do-random
pseu o . {dj}iﬁo — CE:: (15); M[C:’; (151 ~ Cf”' (15 - Ror L. (4.11)

number generator

Since the number generators can be programmed to produce any sequence, Eq. (4.11) is a slow
but feasible means of encipherment.

The concealed propagation of order through pseudo-random numbers and geometric
complexity also adds a novel twist to the problem of chiral bias. This concerns the observation
that naturally occurring proteins are almost exclusively composed of chiral amino acids of the
‘L’ variety [24, 25]. Although these compounds are far more complex than the surface Coulomb
states, the basic production mechanisms are presumed to be similar in both cases: The
underlying idealization is that a uniform statistical mix of inmitial states evolves towards
equilibrium in a symmetric pair of potential wells whose minima correspond to states of opposite
chirality. Since processes of this kind always lead to a racemic mix of final states, the observed
‘handedness’ of the biosphere is usually attributed io a critical fluctuation (*spontaneous’
symmetry breaking), or a fundamental chiral force (e.g., B - decay) that introduces an
asymmetry in the potential wells [24, 25]. Equation (4.11) indicates still another possibility:
that the final chirality is actually predetermined by a set of algorithmic instructions at a nén—
geometric level. It is certainly feasible to generate long strings of pseudo-random numbers that
will consistently produce ‘L’- handed initial configurations [23]. The appearance of a racemic

or unbiased mix of initial states is therefore an illusion - the ‘L’ - die has already been cast
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before the game begins.

The binary code of chirality disappears when (4.11) is rewritten for 14 charges. The
essential difference in this case is that the ground state is not enantiomorphic even though the

pseudo-random initial configurations may be chiral, i.e.,

pseudo-random

~ a5 — CiL (19): MICy,, (19)] - €, (14). (4.12)

number generator

The transition from (4.12) to (4.11) illustrates another threshold of structural complexity. When
there are 15 charges represented by 30 blocks of 12 digit numbers — as in Eq. (4.10) —- each
string of 360 digits specifies a unique dichotomic variable, an ‘L’ or an ‘R’. However, if the
‘strings are parsed differently — as in Eq. (4.12) -— they are too simple to generate the chiral
alphabet. By this means the threshold of a geonieiric property is expressed as a minimum .
complexity requirement for a coding algorithm.

E-1. Coulomb Angles and Tammes Angles. The Tammes problem is equivalent to finding

the largest angular diameter 8, (N) of N congruent caps that can be packed on the surface of

a sphere without overlapping [12-14]. Column 7 of Table VIII lists the optimum values of

8, (N) obtained by Kottwitz [30] and Tarnai [79] for 3 < N < 100. Clearly,- 8.,(N) is a (not
strictly) decreasing function of N, with an asymptotic dependence

6,(N) = (8n/3'»N)'2, for N > 1. There is an analogous angle for the surface Coulomb

problem 8, (N) determined by the minimum angular separation between neighboring charges in
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a locally stable configuration [39]. Several examples are contained in column 7 of Table V:
©,(16) = 48.9362°, ©_(24) = 42.0653°, 8_(32) = 37.3773°, etc. A comprehensive survey
is given in column 6 of Table VIII. Since the optummuon in the surface Coulomb problem is
carried out with respect to total energy rather than nearest neighbor separations, the two sets of
angles are related by 8,(N) > ©_(N) when N > 6, N + 12. 8_(N) is a non-monotonic but
generaliy decreasing function of N with an asymptotic estimate resembling the Tammes resuit;

6_(N) ~ 4n/N)2, for N>1. If this estimate were accurate to leading order in N, then the

relative difference between the two sets of angles would approach a constant value for large N,

[B,(N) - 6,(M)/8,(N) ~ 1 - 3¥p2'2 ~ 0,07, N > 1. (4.13)

Figure 12 shows this relative difference in graphical form when 6,(N) is averaged over all

locally stable states belonging to a given value of N. Despite the prominent fluctuations, the
overall trend is roughly consistent with (4.13).

The basic purpose of these comparisons is to see whether the configurations of points
have some kind of asymptotic regularity for large values of N that is insensitive to the precise

nature of the underlying interactions. If the trends in Fig. 12 can be extrapolated beyond

N ~ 112, then it would be an indication that the local equilibrium states of the Coulomb law |7, - r';l'2

and the Tammes interaction |F; - 7;|™'*'°™® retain a distinct character even for arbitrarily large

values of N.
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